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A bstract - In modeling micromachined deformable mirrors with electrostatic actuators
whose gap spacings arc of the same order of magnitude as that of the surface deformations, it is
nccessary to usc nonlincar models for the actuators. In this paper, wc consider micromachined
deformable mirrors modelled by a membrane or plate equation withnonlinear electrostatic ac-
tuator characteristics. Numerical methods for computing the mirror deformation duc to given
actuator voltages, and the actuator voltages re quired for producing the desired deformations
at the actuator locations arc presented. The application of the proposed methods to circular
deformable mirrors whose surfaces are modelled by elastic membranes is discussed in detail.
Numerical results are obtained for a typical circular micromachined mirror with electrostatic
act uators,

1. Introduction

DEFORMABLE mirrors with electrostatic actuators have been widely used in various adaptive optical
systems [I], [2] and spaceborne antennas [3]. in 1977, Grossoand Yellin [4] developed a membrane mirror
whose deformations were controlled by means of discrete electrostatic actuators. subsequently, various
forms of deformable mirrors with electrostatic actuators have been developed {5}-{8]. The advent of silicon
V1.SI technology has made possible the integration of deformable mirrors with microelectronic circuitry.
In 1983, Hornbeck [9] perfected a 51um square deformable mirror with pixelated mirror elements. The
mirror deformations were controlled by electrostatic actuators driven by microelectronic circuits which are
lutegrated with the mirror assembly. his mirror was used primarily as a light modulator. Therefore it
was unnecessary to control the mirror shape precisely. The present. work is motivated by the recent effort
in exploiting micromachining technology to develop small deformable mirrors with pixelated electrostatic
actuators for controlling the mirror shape precisely [10]-[1 3]. These mirrors have potential applications in
adaptive optical systems for interferometers and large-aperture telescopes, and miniature irnaging devices.

Previous analytical studies [I], [4] of large deformable mirrors with electrostatic actuators do not include
the effect of mirror deformation onthe actuator gap spaciug.In micromachined deforinable mirrors with
electrostatic actuators, it is desirable to set the gapspacing assmallas possible so asto minimize the
operating voltage level. Consequently, the mirror surface deformations are of the same order of magnitude
as that of the gap spacing. Thus, it is nccessary to use nonlinear actuator models. Recently, Caiet a [14], and
Gilbert ef al[15] developed computational algorithms based on finite-cle,ncr,t method and iterative schemes
which could be used for the numerical solution of noulinearmodels of microelectroniechanical structures
such as the deformable mirrors under consideration Here, wc make USC of the contraction mapping method
for the determining the mirror deformation due to specified actuator voltages, and also propose a method
for solving the inverse problem of determining the required actuator voltages to achieve a desired mirror
deformation.

We begin with the development of mathematical models in the formm of nonlinear partial differential
equations describing the mirror surface deformations. “1’hell agorithms for computing the mirror deformation
corresponding to specified actuator voltages, and for comnputmgthe required actuator voltages to produce a
given set of mirror deformations at the actuator locations, are proposed. The application of these algorithms
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to circular deformable mirrors whose surfaces arc modelled by elastic membranes is discussed in detail. The
paper concludes with numerical results for a typical micromachinednirror with electrostatic actuators.

1I. Mathcmatical Models for Deformable Mirrors

Figurc 1 shows a sketch of a circular micromachined deformable-mirror formed by a thin elastic surface
(cg. silicon nitride) coated with a thin electrically conducting filin. The electrostatic actuators correspond
toclectrodes deposited on a ground plane over which the mirror is attached. A voltage is applied between
an electrode and the mirror surface so that the actuator is responsible for pulling on a small portion of the
surface. The desired mirror deformation is achieved by applying suitable voltages between the clectrodes
and the mirror surface. The fabrication of such inirrors is described in {11].

Let Qbe an open connccted subset of the Euclidean plane R? with a piecewise smooth boundary 6§
representing the spatial domain of the mirror. For a rectangular mirror, € is specified by Qr={(z1,22) €
R%:|z1|< £y, | z2|< €2}, where the {is are specified lengths. For a circular mirror, Q is specified by
a disk c-= {(ry, 0), O <r<r, O <O8<27x}. Consider a mirror with P actuators. Each actuator
electrode is specified by a patch §; (aspecificd openconnected subset of 2), whose location is represented
by % = (%51, zj2) (an interior point Of Q;),i=1, .. P. Figure 2 shows typical actuator electrode patches
for rectangular and circular mirrors.

Assuming that the elastic surface deformation is in the linear regime, the downward displacement u(x)
normal to the undeformed mirror surface at a point x €€} can bedescribed by a partial differential equation
of the form:

(Au)(x) =-f, @
where f is the surface force density whose explicit forin will be derived later, and A is a linear partial
differential operator.

When the thickness-diameter ratio of the mirror surface is small (typically << 107 such that the
bending energy is negligible compared to that duc to tensile stresses, the mirror surface may be regarded
as an elastic membrane. Let oy; (X), 1, 5= 1, 2, deuote the components of the syinmetric stress tensor in 4he
mirror surface at x satisfying the positivity condition
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for all £=(£;,€2) € R?and x €2, where ¢; and c.arc known positive coustants, and || .|| denotes the

Fuclidean norm. Then the operator A has the form:
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In the special case with uniform tension 7', wc have 9ij =-T'6;; , where 6ij denotes the Kronecker delta.
Assuming that the mirror is clamped to its boundary 2, u must satisfy the boundary condition:

u(x) =- 0 for x €8. 1)

When the thickness-diameter ratio of the mirror surface is large such that the bendingenergy is not negligible,
one may model the mirror surface by a plate. For the case with uniform thickness h,

tu dty d'u

where D is the flexural rigidity of the mirror surface given try Eh*/{12(1-v?)} with £ being the Young’s
modulus, and v the Poisson’s ratio. Assuming clainped edge, the boundary conditions are given by

u(x)z: O and (Gu/n)= O a HQ, (5)
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wliere (Qu/dn) denotes the outward normal derivative of u at 952.

‘To derive an explicit expression for the surface force density f, we first consider the electrostatic force
denstily over a palch2; due to a specified static voltage V, applied to the j-th actuator. Lt do denote the
distance between the undeformed flat mirror surface andthe bottom plane. Under the assumnption that the
minimal width p; of the patch §2; is large compared to d, (typically, £; /do>10),the clectrostatic force
densily duc to the j-th actuator can be described approximately by

Jelx) 5t 4 () foral x €4, ™

where ¢, is the permittivity of free space; and ¢; may be taken as the characteristic function of {j(i.c.,

¢5(x)=1if x €Q2j;¢;(x)= 0 if x €2-;), or a weighting function which models the spatial variation of
fe duc to the fringing electric field near the boundary of L?. Assuming that the spatial variation of u over
§2; is small, we may replace u(x) by a weighted average of u over Q;defined by

u; :w;]/ wj (x)u(x)ds;; wj :r/ wj(x)dQ;, (8)
Q, Q;
where w; isa suitable spatial weighting function. In the special case where w;(x)=§(x - x;) istheDirac
delta function, 1; reduces to u(x;), where u(x;) specifies the location of the j-th actuator.

Substituting the modified (7) into (1) leads to a nonlinear partial differential equation given by

£ V2
(ANGY = =05 a0 ©

defined on §2, where A is defined by (3) for a membrane,and by (5) for a plate.

When the mirror deformations over §2; are small compared to d, SO that do — u,~ do, then (9) becomes
lincar. This approximation is poor when it, is applied to micromachined mirrors whose deformations arc of
the same order of magnitude as that of do. Therefore we shall consider only the nonlinear model (9) in the

subsequent development.

Let V denote the actuator voltage vector (V,, ....Vp)T, and V= (V. ... V2", where (:)7" denotes
transposition. Let u =:(iiy,....4p)7. The relation between u and V’can be expressed in the form
P
U(Xx) "Lp(x,itj)vj?, (lO)
j=1

where p(x,u;) corresponds to the mirror deformation at any point x € Qdue to unit voitage applied to
the j-th actuator with specified actuator gap (d. — 4;). Explicit expressions for p can be found for special
actuator electrode shapes by solving (9) directly by considering u; as a known quantity. Foran arbitrary
actuator electrode shape,p can be expressed in terms of the Green’s function K = K(x, x') wesenmated with
the boundary-value problem [16]:

(Au)(x) = 8(x - X), x,x' €4, (11)

with appropriate boundary conditions, where § is the Dirac delta function, Here, the boundary-value problem

for (9) can be reformulated as an integral equation for the mirror deforrnation u corresponding to given static
actuator voltages Vj ,j=1,... F:

, / F\ fo‘/jz ’ Iyay *}; - 2
u(x) = / K(x,x )L 2d, - ;)2 ¢; (x")dx'= >J p(x, 4;)V}7, (12)
N j=1 o J Jj=1
where
p(x, ;) = é(do Lo _Ejgn K(x,x")¢;(x")dx". (13)
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Fquation (12) is valid provided that 0 < u(x) < d,for dl x € Q2.

Multiplying both sides of (12) by w;(x), and averaging the resulting equation over €25 lead to a set of
1" unplicit nonlinear algebraic equations relating u and V°. They can be written in the forin

u: My (W)EP@)ve, (14)

where I'(u) is a P x I’ matrix whose (¢, 7)-th eletnent corresponds to “J.‘_lfn wi(x)p(x, 15 )dS.

1. Computational Problems

We shall consider two basic computational problems associated with the deformable mirror. To simplify
the subsequent development, only the case where it = u(x;), j = |,...IP, will be discussed.

A. Mirror Deformation Corresponding to Specified Actualor Voltages

Here, wc are given actuator voltages V = (VI, ..., Vp)T. It is required to determine the corresponding
mirror deformation U = u(x), x € 2. We observe from (12) that once the mirror deformation at all the
actuator points are known, the solution to the boundary-value problem for (9) at any point in £ can be
determined ezactly. 1'bus, the computational problem can be decomposed into two basic steps:

Step (i): Determine the mirror displacement u == (u(x1) . .. u(xp))" at the actuator locations, This
involves determining the fixed points of the mapping Avo=.

Step (ii): Substitute the u obtained from Step (i) into (12) and compute the mirror deformation u = 1(x)
for any w € Q2.

in view of the form of (14), it is natural to use the contraction-mapping method [17] to determine
u in Step (i). Oncay also usc other methods suchas Newton's method for solving (14). Hewever, the
contraction-mapping algorithm has the simplest form, and it converges to a fixed pointof Ay corresponding
to a statically stable mirror deformation.

Let U be a closed bounded subset of the Fuclidean space B¥, and u®€ U be an initial guess for ¢he
fixed point of Ays.Then the iterative algorithm is given by

bl = Mya(ut), €50, 120 (15)

If AMy2 is a contraction mappingon/ (.., thereexists a constant o, 0 < a < 1 such that || Ayz(u) -
Ny:()||<a]| u —ii || for any u, ae U, where |||| denotes the Euclidean norm for RF), then the sequence
{u* k= 0,1,2,. .} converges to a unique fixed point of A2 in U. Moreover, the sequence satisfies the

efthvats

| u- uf <ot/ - )] Ta® = 'y, kb =:0,1,2,. ... (16)

To apply the contraction-mapping method to our problem, it is necessary to choose a suitable domain
U for the mapping Mvz. This domain must be sufficiently small such that it contains only onc fixed point
of Mv2. Here,welet & = {uek?:0 < u<di=1,. ... P} where d is a constant such tha O < d < do.
Next, wc shall derive a sufficient conditionunder which A2 maps i into I{ (i.e. Ay,2 dots not map points
in U to points outside U). Suppose that

M é/ K(xi, x")¢;(x")dx’ > 0 for i,j= 1,. ..)P. 7
]
Then, from (12), wc have
€V My PL VM
< S 5 < T 18
0 < 21 2Ndy - ulx; 302 %2(@ “u(xp))?’ (18
where M = max{Mi;;i,j=-1,....1}. Evidently, if




P
MY~ V< 2do — d)d, (19)
j=I
then My maps i/ into 24. To derive a sufficient condition for Ayatobe a contraction mapping on 4, consider
1 ]
| pxi, () = ploxi, i) 1< 50 K (e, x)gs (Y e ()
( J)) ( )) ./rﬂ J( ) (do* u(XJ'))? (do(]_ U(Xj))2

Since the real-valued function f defined by f({)=1/(d,--02 is strictly monotone increasing on the intcrval
[0, d, [, it follows from the mcar,-valu theorem that

L) “FOISFE 1¢-CIf )1 ¢l =" 1 ¢ C 1)

for all ¢, €[0,d[,¢ <{ <, where f = df /d¢.Trom (17), (19) and (21), wc have

I p(xi, u(x;)) pxi, i(x;)) 1< (ca, d)alu(x» i(x;) | (22

Usiug (14),(22), and the Schwarz inequality [47], wc obtain the estimate
FoE 211/2
Il My () = Ay (@) 1< [L(L | plxe, u(x3)) = pxe, (x;)) | V)]

(W\ Ed_-_d)—g | iy a(x;) Vf)]lh

o e ) ()

j=1
. eoMVP .,
= (a;:;)‘“ u - iV (23)
‘1'bus, under condition (19) and
s EMVP
0< a= -2 V<1, (24)

Mv2 is a contraction mapping on . Conditions (19) aud (24) are conservative since they are independent of
the sizes of the spatial domnains of the actuators. Sharper suflicient conditions for contractioncan be derived
for specific actuator clectrode patterns. We observe that, for a nonzero|| V’[|,the constant « defined in

(24) tends to infinity as d--+d,. ‘1'bus, in order to satisfy o < 1, || V’||] must be reduced accordingly as

d increases towards do. This situation can be explained by considering the simplest case with one actuator
located at xl. In this case, (14) reduces to a single algebraic equation in the following normalized form:

ﬁ]/do: Nva(ﬂl)éﬂmz/(l - z-ll/do)zy (14,)
where 4= u(x,), and £ is a positive constant given by

€o

FE o /n K (x1,%")¢1(x")dx’ (147)

Figure 3 shows the graphs of Av for various values of kV# >0. Theirintersections with the diagonal line
give the normalized fixed points of Nya.Fvidently, for sufliciently small kV/? (Case (@), My has two fixed
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points, implying the existence of two solutionsto (9). The larger fixed point is unstable. When V{2 equals
the critical value 4/27, these two fixed points merge into onc asdepicted by Case (b). If rcV{" 1s further
incrcascd,Nvlz no longer has a fixed point, implying the nonexistence of a solution to (9). The critical value
of kV{¥in Case (b) corresponds a bifurcation point at which buckling occurs [25). Note that for Case (a),
in order for I{ = [0, d] to be a domain of contraction for Nva d must be less than the unstable fixed point
which tends to d, as «V{* - + O. This conclusion is aso cmhhltcd by the forin of the contraction constant o
givenin (24).

Now, having computed the mirror deformationu =. u(x) for x € §2 corresponding to given actuator
voltages Vj, j = . , P, one may proceed to express u interrus of orthogonal polynomials such as Legendre
or Zernike polynornials. The coeflicients of the polynomial can becomputed from tbc given values of u over
a finite sct of points in Qusing standard methods []], [22].

B. Actuaior Voltages Corresponding 10 Specified Mirror Deformations at the Aclualor Locations
Now, wc consider the inverse problem of computing the actuator voltages which produce a specified u
corresponding to the desired mirror displacements at the specified locations X3, . ..xq in Q.Here, the points

X; need N0t correspond w the actuator locations. When the desired mirror deformation at specificd locations
X, ..., Xgin{) Here,the points x5,0 =1 ,Q, need not correspond to the actuator locatious. When the

desi red mirror deforination ug = ug(x) is cxpresch in terms of a set of coeflicients associated with a specified
basis {%_cp,(x) i 1)2, ..} (ie., ua(x) =y oipi(x)), we define the desired suirror displacement vector
ug by

ug = (La.go,(xl ,> o "D'(XQ))q (25)

It follows from (10) that ug=Y(uz)V?, Where P(,lrld) is a linear transformation on R¥ into R%
represented by a Q x P matrix whose i-th row is (p(%y, ua(x1)), - o p(ki,ua(xp))). When Q = P, and X
corresponds to the location of the i-th actuator, ¥{uy,) reduces to P(u4) as defined in  14). Now, the required
actuator voltages nay be obtained by

VI ]."+ (ud)ud, (26)

where P*(u4) is the pseudoinverse [18] of P’(ua), and V *corresponds_to the vector u kP which minimizes
[lug - P(ua) V2. In the special case where P’(ugq) is nonsingular, P*(u4) reduces to the usual inverse
of P(ug). In general, it is possible that some components of V *obtained from (26) arc negative. This
implies that the desired mrror displacement uy is not attainable by the downward electrostatic forces
produced by the actuators, A trivial examnple of anunattainable desired mirror surface is one with aconcave
shape. An alternate formulation to this problem is to find an element w* iy the closed bounded convex set
V ={weRl:w >0 and }w|<V?} such that

J(w* )< J(w) for al w €V, @7)

where J(w) =|| ua—P{ug)w ||? and V2 is a sufficiently small posi tive nuinb er. This is a convex programming
problem. 1ts numerical solution can be obtained usiugthe extended gradient-projection method [1 9].

1V. Circular Deformable.Mirror

Consider a circular deformable mirror with normalized spatial domain givenby the unit disk (¢ =
{(7,0): 0<# <1 0<0 <2x}, where #=1/r,, and r-,is the wirror radius. Let Q; denote the normalized
cflective actuator spatial domain Q. Por @pemﬁcncss we shall usc a membrane model for themirror surface
deformations. Assuming that the mirror surface has uniform thickness and tension T, the partial differential
equation corresponding to (3) arid (8) in cylindrical coordinates is given by

Qu N 1 du 1 §%u B >]’« €, ( oV
T R

e T 20w\ g, ;) B @)
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with boundary condition:

u(x)=0 for all x :(7"',0)65520, (29)

where X;=(7;,0; ), and ¢; denotes the characteristic function of ;.

Using the explicit expression for the solution of the elliptic partial differential equation (1) with boundary
condition (29) and arbitrary right-hand-side f [20], [21], (28) and (29) can be reformulated as a nonlinear
integral equation of the form

2%
u(,0) = 12 / / K (7,0,0,6)f (0., w)pdpd, (30)
where K = K;4¥2,and
Ka(7,0,0,€) = ~(n(P) 4 3 26"~ 57 costnle = ) {U(n) - Up - P, @
n=1
K5, 0,p,6) = ~(In(p) 4 D ("~ p"cos(n(€ ~ ) (U(p~ )~ U(p~ 1)}, (32)
n=1

e, v 2.

F(p, & u) = J>: (c-ioiu_(ijj) 63 (p, ), (33

where U denotes the unit-step function. It is shown in Appendix A that

27 1
K(7,0,p,8)¢; (p,{)pdpd{J < M = n{exp(--7/3) — 2In(3/5) + 21/10) for all(#,0) € Qc (34)
0

Applying conditions (19) and (24) to this case, a sufficient condition for Ay;2 to be a contraction mapping
on I{ (defined in Sec]]) is that

150

2 (exp(=17/3) - 21n(3/5) + 21/10) < 2(d, - d)*d, (35)
and

sea(exp(- 7/3) - 2m(3/5) + 21/1WWP | V|| _, (36)
27'(d, - d)3 '
The bound in (35) has amaximum at d =d,/3, which is about the onset of the well-known pull-in instability
in structures of this type. ‘Jbus, for a d < d,/3, and any given any V satisfying (35) and (36), the
corresponding mirror deformation can be computed ileratively using s adpercithm given by (1 5).

Now, we consider the problem of determining the actuator voltages V corresponding to specified desired
static mirror deformations at the actuator locations. lere, the desired mirror deformation ug :rud(x) is
expressed in terms of Zernike polynomials [22] ,[23]:

oo

ug(7,0) = > a;%;(7,6), (37)

j=1

whcrca;-s arc specified real coefficients, ancl

VA TR (F)\/2/7 cos(m0)  for j even and m # 0,

Zi = 4 Vn ¥ IR (7)y/2/7sin(mf)  for j odd and m # 0, - (48)
n- 1R, (7)/ /7 form=0



The functions R arc radia polynomials defined by

]tnl('~) ("i)/z( 1)3 (7l - 6)I 7~n» 2s (39)
n r)= - Y. n mﬁ A n-”r;nm T
o s!(-jZ' - s)!(2 - s)!

The degree of the polynomal n and the azimuthal frequency m: arc positive integers satisfying m<n and
n-m even. The radial polynomials K} are normalized such that /' (1) = 1. The index j is a mode ordering
number which may be defined in many ways. Here, wc adopt Nell’s convention [23] where the numbering
scquence of the index j of #; proceeds as follows: for a given n, modes with a lower m are arranged first.
When m = n, the even jterms correspond to the symmetric inodes defined by cos(mnf), while the odd j
terms correspond to the antisymmetric modes defined by sin(m#).

Evaluating ug given by (37) at the actuator locations X; = (7,0;) gives

oo o0
ug = (Z a; Zi(71,01),. .. >: a; Zi{Tp, 0}))7.) . (40)
i=1 i= 1
The i-throw of the matrix P(ug4) is given by
. r2¢, . ?-c N
p(Xiug) = [ =22 K(%, X)X, KX XX (41)
(o) (2«10 g I e aa )

thus, given ug, the corresponding V2 can be determined from (26).

V. Numerical Examples

Now, wc apply the results in Sections IV and V to a typical circular micromachined silicon mirror with
radius r, = 0.5 cin and tension 7'=100N /m. The actuators consist of a center pad with radius r,= 0.2
cm,and eight fan-shaped actuators. The fan-shaped actuators are centered along circles with radii 0.3 and
0.4 cin and with angles separated by n/2 radians. Moreover, they have uniform radial width of 0.09 em |and
angular aperture of 0.957/2 radians. The suinof the characterist ic functions of the actuator spatial domains
is shown in Fig.4. The distance d, between the undeformed flat mirror surface and the bottoin plane is set
a 10;an. Explicit expressions for the elements of the matrix ¥(u)defined in (14) for fan-shaped and center
pad actuators are given in Appendix]].

Firm, weapply the contraction mapping algorithm (15) to comnpute themirrorde formation correspond-
ing to given actuator voltages V. For the foregoing parameter values, conditions {35) and (36) for Av= to
bea contraction mapping are given explicitly by

| V [|*<0.56144d(10 - d)?, I V[|< 0.09357(10 -d)?, (42)

where d is given in microns, Evidently, for this case, (42) represents a conservative condition. This is
duc to the fact that the size of the actuator spatial domnainus is not taken into account in the derivation of
(35) and (36). Actual computational experience revealed that convergence of algorithin (15) is attainable
for wuch larger values of |} V ||. Figure 5 shows a typical actuator voltage pattern corresponding to
V = (5,10,5, 35,10,10,5,35,10)7' volts whichdoes not satisfy (42). The norm of the difference of the mirror
deformation u between two successive iterations as a function of iteration number is shown in Fig.6. The
initial guess for the mirror deformation is given by u(#,0)= (1 - #2?) pm. Figure 7a shows the computed
mirror deformation. The radial profiles at § =- v/4andx/2 radians, and the level curves of thecomputed
mirror deformation are shown in Figure 7b and 7¢ respectively. Next, we reduce the actuator gap do to 6
microns while maintaining the same V, Figure 8 shows the norm of the difference of the mirror deformation
U between two successive iterations as afunction of iteration number starting with the flat mirror as the
initial guess. here, we observe an oscillatory behavior of the iterated solution sequence indicating that the
nitial guess is outside the doinain of contraction,

Now, let the desired mirror deformationd be specified by Zernike coefficients &1=2.45/mpum, aq =
- 1.4435+/mpum, and ay = 0.0225 \/mpm. Thus




ug(7, 0) = (2.45 Z1(7) - 1.4435X4(F) + 0.0225 711 (7))V/n

= (245 — 1.4435/3(27% - 1) 40.0225 VH(67* - 672 + 1)) pm. (43)

The above ug satisfies the boundary condition u4(1,8)= O. Figure 9 shows thelevel curves and surface of
the desired mirror deformation. Fvaluating u4 at the center-pad radial point r1/2=0.1 cm, and at the
remaining actuator locations gives u = (8.488, 5.549,3.068,5.549,3.068, 5.549, 3. 068, 5.549, 3.068)7 y11n. The
corresponding P(u) is given by

0.5002 0.0053 0.0013 0.0092 0.0022 0.0092 0.0022 0.0053 0.0013
0.1979 0.0183 0.0047 0.0036 0.0009 0.0019 0.0005 0.0036 0.0009
0.0864 0.0087 0.0052 0.0017 0.0004 0.0008 0.0002 0.0017 0.0004
0.1979 0.0036 0.0009 0.0183 0.0047 0.0036 0.0009 0.0019 0.0005
P(u) = | 0.0864 0.0017 0.0004 0.0087 0.0052 0.0017 0.0004 0.0008 0.0002 | X 10.77 (44)
0.1979 0.0019 %.0005 0.0036 0.0009 0.0183 0.0047 0.0036 0.0009
0.0864 0.0008 0.0002 0.0017 0.0004 0.0087 0.0052 0.0017 0.0004
0.1979 0.0036 0.0009 0.0019 0.0005 0.0036 0.0009 0.0183 0.0047
0.0864 0.0017 0.0004 0.0008 0.0002 0.0017 0.0004 0.0087 0.0052

which is nonsingular. The corresponding actuator voltages which produce the desired u arc given byV’=
P(u) luor V = (9.6254,3 0.1328,41.7857,30.1328,41.7857,30.1 328, 1.7857,30.1328,41.7857) volts. Figure
10a shows the actual and desired mirror deformations along a radial line at an angle of x/4 radians. Their
difference is shown in Fig.10b. It can be seen that the actual mirror deformations at the actuator radial
points 0.1,0.3, and 0.4 cm match exactly with the desired values as expected. Thelevel curves and surface
of the deformed mirror corresponding to the computed V are shown in Fig.11.

VI. Concluding Rernarks

Recently, precision micromachined silicon mirrors with electrostatic actuators were successfully fabri-
cated and tested atthe Jet Propulsion Laboratory [] 1]. The experimental results were in close agreement
with the computational results using the memnbrane models with nonlinear actuator characteristics described
here. The details will be reported in the near future [24].

in contrast with finite-clement methods which involve spatial discretizationresulting ina large number
of noulinear algebraic equations to be solved, the computational methods presented here do not require
such discretization. Once the mirror deformations at the actuator locations corresponding to given actuator
voltages are computed, the mirror deformation at any point can be computed as accurately as desired.
Moreover, the number of nonlinear algebraic equations to be solved is equal to the number of actuator
electrodes. Finally, the methods presented herenay also be applicable to large deformable miirrors with
actuator forces which are describable by nonlinear algebraic functions of the local mirror deformations.
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Appendix A

Consider the integral

/(:Jélf"(fvo,p,s)@(p,s)pdpdeH(:>+ 1(7,.0) + 1(7) + 1a(7, 0), (A])
where
m i
ne)= [ de me) 50 €, (4.2)
noy =~ [Cae [ L (= 7 cos(n(€ — 0))d; (p, Opdp, (4.3)
2x
Io(7) = j{ de / n(p)d; (p,E)pdp, (4.4)
2x 1 ?_0‘ R
1a(5.0) = = [ de [575n — o) costn(e ~ 0))d (o, 0)pdp (45)
" n=1

The sum of the integrals I; and I3 satisfies the estimate:

164 B [ (- e / 30, ndn - [ omio1isto.c100)

</ i a3 () - / lu(e)dr)

=a(l - #2)/2<x/2 for all# € [0, 1]. (A.6)

Thesum of theintegrals 1,aud 1,cau be bounded by

| Io(7,0) 4 LIi(7,0) |< /Ohdf(—f:f'-‘* n)/ P11 8i(p,€)dp

ir/ " T g, £)dp)
QW(-;(f--;-?) NG +2L ))
< QW(? +01(7) 4 92(7)) for all(7,0) € (A7)

where

= ~2 2 = M) - 90\ ‘I.2 -
g1(F)= -7 (5 - ]11(7)), 9207y = 2 >3 %712 »4)‘/

n

Using (A.7) aud the fact that

A

Orélfag(lgl(f') = g1(exp(--7/6)) = 56)(;)(--7/3),

1




) 2\ 2/(n=2) sqp —
mdx(1 - in) = (") (—71 5 (A.9)

0<rF
Wc have
1 , 2 2N\ 2/(n~2) ) .
11 ’ - _7 — . A.]
2(F10,+°4(F,U)IS2T("3 5 exp(- 1)+ ,?—gn(nw)( ) Jforall 7,0y e, (A.10)
Since (2/n)*("~2) < 1 for alln> 3, thus
>0 2/(n-2) N
Rt A.
2:4 n+2 ( ) <2$2/1(n), (AID)
where p(n) =1/(n(n-+ 2)). Using the fact that
> 2
L 2P(n) <lim 2;1( )+ 2P(3)+f2/t(x)dz = - In(3/5), (A.12).
n=3 3
we obtain the following estimate
. . 24 . -
| 1(7,0) i 14(7,0) |< 7((-1*5 +exp(—7/3) - ‘211\(3/5)) for dl (7,17 €8¢ (A.13)

Combining (A.6) and (A.13) leads directly to the desired estimate (34)

Appendix I3

For a center pad with normalized radius #,, we part|t|on the normalized mirror domain {2, into two
disjoint subsets Qpl = {(7,0):0<7 <7#,0 <0 <2} and ng = {(70): 7 <7< 1,0<0 <27},

For (7,0) € QP1:

quENre (o o 1
(7, 8, u(x;)) = »Af—é;; ~—--(—»~r;ln 7y E(T; - r“)); (B.1)
and for (7, O) € {pe:
(7,0, u(x;)) = 43(“;7’,‘}1)_)77131,17", (B9
where u(x;) corresponds to the mirror displacement at the circle with radius 7 = 7,/2, and
-~ (O
q(u(x;)) 2d, - u(x;))? (12.3)
Yor a fan-shaped actuator electrodes with normalized spatial domain QJ = {(7,0): 7 - AF; /2 < T <

Tid OT/2,0; - A8 /2 < 0 < 054 AG;/2}, we partition the normalized mirror domam mt,o four disjoint
subsets Qj,,z =1,...,4, defined by

Qp = {(F,0):0<7<i7,0<0< 2y, Q= Q
Qpa = {i\8) 7} <1,0 <0< 2k
Q4 = {(7, theta) : Fp< i<, 0; >0>08). (B.4)

2




A7;/2,07 = O-- A0;/2,0} = O+ A0;/2; and where A7; and AOJarc

where 17; =T A AT 2,7 = 7 -
the normalized radial width andthe angular aperture of thefan-shaped actuator electrode espectively

Yor (7, 0) € Q-

a(u(x;))ro

w7, 0,u(k;)) = - { 9 P 8% - (7 () 4 (7)) In(;)

~ T (( -1 )Hz _ j)H?)[sin(kwj* -0) -- sin(k(OJT - 0))]

((F- 2=k £ %5 F)sin(k(0] - O) - sin(k(0; —~ 0))]

,’:2
o G /7)lsin(2(0F — 0)) ~ sin(2(0; -~ o)1 }; (B.5)

(7, 8, u(x;)) = g("(iJ))TZ Ab; ~ 42 - 1
P70, u(%;)) = ToxT Vg T (7;) (111(11.*)‘. 5)

(FHEM2 = (57 RH2) 4 7 (7 12— #92)sin k(6] - 0)) — sin(k(0; - 0))]
gk (T s )fsink(8} - 0)) - sin(k(8; - 0)))

L
-{-»Z ln(r?/1')[5111(2(9]-+ - 0)) -- sin(2(f} 0))]}

for (#,0) € Qya:

(R0, u(3; 3 = Q(”("7> { A 75 AF; In(F)
L T (1”" = FEE (7 ) [sin(k(0) ~ 0)) - sin(k(6; - 0))]};

and for (7,0) ¢ Q“:

50, = LD LD (- 20y - 1) -0

- }“2.; %2(‘ 'L”""[(f‘k_i 2 _ (iﬁ]?-)k—Jr?(’:k — k) + fk((f;' )k+2 pE 2)] <m( (0;& _ 0)) - SlI)(k(OJ- B 0))]

k-t 2y
2 g ; P B sin(k(0} - 0)) - sin(k(0; -
w (1 0} - 0) - sin(h(s] - o)

i~17 ln( vk }lsm(?( - 0)) - sin(2(0; - 0))]}

(B.6)
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FIGURE CAPTIONS:
IF1g.1Sketch of a circular microinachined deformmable mirror inthe forn of a thin elastic surface with clee-
trostatic actuators.
I"ig.2 Typical actuator patches for rectangular and circular mirrors.

¥ig.3 Graphs of My2 for the single actuator case with various values of xV}

FFig.4 Srrm of the characteristic functions of the actuator spatial dornains for a mirror with a center pad aud
eight fan-shaped actuator electrodes (Az=Ay=1,/30).

Iig.5 Actuator voltage pattern corresponding to V = (5, 10,5,35,10, 10,5,35, 10)7 volts (Az = Ay =. r,/30).

Fig.6 Norm of the difference of the mirror deformation u between two successive iterations as a function of
iteration number.

Iig.7 (@) Computed mirror deformation; (b) radia profiles at O = 7r/4 (solid curve) aud w/2radians (dashed
curve); (c) level contours of the computed mirror deformation.

F'ig.8 Norm of the difference of the mirror deformation u between two successive iterations as a function of
iteration number starting with the flat mirror as the initial guess; d, == 6 microns.

Fig.9Level contours and surface of the desired mirror deformation given by Iq. (43) (Az=Ay=1,/30).

I'ig.1 O (8 Computed aud desired mirror deformations along a radial line at an angle of #/4radiaus cor-
respondingto V = (9.6254,30.1328, 41.7857,30 .1328,41.7857,30.1328,41.7857, 30.1328,41.7857)" volts; (b)
Difference between the desired and computed mirror deformations along a radial line a an angle of n/4
radians shown in (a).

Fig.11Level contours and surface of the computed mirror deformation corresponding to V. given inFig.10(a).
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